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The inverse problem in electromagnetics often deals 
with quantities of the form: 

F = [v f (E,B)dV (1) 

where f is a function of the electric and magnetic 
fields at a point The fields are themselves implicit 
functions of the system parameters: the conductivity, 
permeability, source current density, etc. In general, 
the fields and the system parameters will take on 
different values at  each point in space. 

Efficient optimization of a quantity such as (1) 
requires derivative information. This information is 
the sensitivity of F to changes in the material 
parameters and sources. A powerful method of 
computing these sensitivities, which is widely used in 
structural engineering (Haug et  al (l)), and recently 
in the magnetostatic case (Park et  al (2) ) ,  is the 
adjoint variable method. This method allows the 
sensitivities with respect to all system parameters to 
be computed at the cost of a solution to an adjoint 
problem. 

This paper derives expressions for the sensitivities in 
terms of the fields of the original and the adjoint 
problems. Expressions for the sources to the adjoint 
problem are also derived. These expressions are then 
applied to an example in which the objective is to 
maximize the levitating force on a conducting ring. 

THE ADJOINT VARIABLE METHOD 

The Method of Weighted Residuals 

This derivation of the sensitivity expressions is closely 
tied to the method of weighted residuals, which is a 
method for solving the system equations (see, for 
example, Silvester and Ferrari (3)). In the weighted 
residual approach, a field quantity 4 is a solution if 
it satisfies the following equation: 

a(u;4,4’) = &w$’) (2) 

for all functions e’, defined over the problem 
domain, which satisfy the boundaryconditions. In this 
equation, U is the vector of parameters which 

specifies the physical structure of the system, e.g. one 
parameter in. time harmonic systems is the 
conductivity. The left hand side of (2) is called the 
bilinear term, and the right hand side is the forcing 
term. Equation (2) is derived by taking the system 
equation, multiplying both sides by a weighting 
function 4‘, and integrating over the problem 
domain. Thus both a(u;$,@’) and Z(u;$’) are 
integrals which depend on the values of 4 and$’ 
everywhere in the problem domain. 

The field solution is obtained using (2) by expressing 
the solution as a weighted sum of basis functions. 
The coefficients of the basis functions,can be found 
using Galerkin’s method, which generates a system of 
linear equations by substituting each basis function fore’ 
in (2). 

The bilinear term possesses certain properties which 
are relied upon to derive the sensitivity expressions. 
As the name suggests, the bilinear term is linear with 
respect to 4 and $/. It is also symmetric with 
respect to @ and 4’: a(u;+,$’) = a(u,$‘,$). Finally, 
the bilinear term must be continuous with respect to 
the parameters U. 

Derivation of the Sensitivity Expressions 

This derivation closely follows the derivation given in 
Haug et a1 (1). Consider a quantity of interest which 
depends on the solution 4: 

(3) 

The perturbation in this quantity due field 
perturbations (which in turn are a result of 
perturbations in the system parameters) is: 

6F = [ - 4f SadV (4) 
v a 4  

For reasons which will become clearer later on, it is 
convenient to introduce an adjoint problem. The 
adjoint problem will have the same bilinear term, but 
the forcing term will be defined as: 

(5) 
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LINEAR TIME-HARMONIC SYSTEMS so that: 
8F = lA(a; 84) (6) 

a ( u ; 4 A , 4 i )  = z A ( ~ 4 : )  (7) 

The solution to the adjoint problem is @A, which is 
defined as the function which satisfies: 

for all functions @;, defined on the problem domain, 
and with homogeneous boundary conditions. Now 
64 is a function defined on the problem domain, and 
it satisfies homogeneous boundary conditions since 
the boundary conditions are not affected by 
parameter perturbations. Therefore 64 can be 
substituted for 4; in (7) to yield: 

4 ~ 4 A , 8 4 )  = lA(u;84) (8) 

5F = @;4~,8’$) (9) 

tiF = a(g;W,4A) (10) 

substituting this into (6) yields: 

Now the symmetry property of a0 can be applied to 
(9) resulting in: 

The property of linearity of a0 allows this to be re- 
written as: 

8F = ~(~;4+84,4,) - u ( u ; ~ , I $ ~ )  (11) 

And since a0 is continuous in U ,  this also holds if the 
parameters U are perturbed slightly (this amountS to 
neglecting the second order term a(6u; &$,@*)): 

(14 8F = ~ ( ~ + 6 ~ ; 4 + 8 4 , 4 ~ )  - a(u+du;~$ ,@~, )  

But 9.64 is a solution to the problem with 
perturbed parameters u+bu, and so it satisfies: 

u(u+ 6 ~ ;  $+84,4’) = Z(u+ 8u; 4’) (13) 

for all functions a’, under the same conditions as 
before. Since @A qualifies as one of these functions, 
(13) can be substituted into (12) with @’=@a to yield: 

8 F  = I ( U + ~ U ; ~ ~ )  - ~(u+du;4 ,4~)  (14) 

If both terms are linear in U ,  then since @ satisfies 
(2) with @’=@,, (14) reduces to: 

8F = l ( 8 ~ ; + ~ )  - U ( ~ U ; @ , $ ~ , )  (15) 

This is the general form of the sensitivity equation for 
any variational formulation. Note that (15) does not 
depend on the perturbed solution. Therefore once 
the solution to the adjoint problem is found, (15) 
allows the perturbation to F to be computed for all 
small parameter perturbations. 

Weighted Residual Formulation 

For the linear time harmonic case, Maxwell’s 
equations are: 

V X ( V ~ )  = (o+jwe)E + js 

The system parameters in this case are: the source 
current density J,, the conductivity U, the permittivity 
e, and the reluctivity v .  The bilinear and forcing 
terms corresponding to the weighted residual 
formulation of these equations are: 

u( js ,o ,e ,v ;k ,E’)  = -/ [ (o+joe)$.i‘ 
(17a) V 

+ 0’w)“v (vxjq.(vxE’)  ] dV 

1(.fS,o,e,v;$‘) = $ .?,*&‘dV (17b) 

Adjoint System Forcing Term 

To clarify the procedure, the forcing term will first be 
derived for objective functions of the form: 

F = /“ f (E)dV (18) 

z*(.f,,O,e,v;E;) = 1°C v , f ) * $ ; d v  (19) 

The expression for the adjoint forcing term follows by 
a direct substitution of the system variables into (5): 

where 0, is the gradient with respect to the 
components of the electric field 8. Note that this 
forcing term is equivalent to driving the adjoint 
system with a source current density of: 

jSA = VEf (20) 

Sensitivities in Linear Time Harmonic Systems 

To simplify the final expressions, the bilinear term in 
(17a) can be re-written as: 

(21) 
0 ,  E, v ;E,  E’) = -Iv[ (o+jwe)E.$’ + j o v d * l j ’ ] d ~  

The sensitivities are derived by simply substituting the 
expressions for the forcing term in (17b) and the 
bilinear term in (21) into (15), which yields: 

[ 6.fs*kA + (60+jw8e)k.EA 
(22) 

8F = 

+ jw6vB.BA ]dV 
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From this equation, the expressions for the sensitivity 
of F with respect to each parameter can be 
identified: 

so = &.&A S, = 

S- = &A 

(23) 
S, = juB*iA 

3s 

More General Objective Functions 

The procedure outlined above, to derive sensitivity 
expressions, can be extended to apply to objective 
functions of the form: 

F = /vf(&&dV (24) 

The perturbation experienced by this objective 
function, due to field perturbations, is: 

8F = Iv[ ( V k f ) * 8 &  + ( V d f ) * 6 d ] d V  (Z5) 

Using algebra and a vector identity, and assuming 
that either f or d tangential vanishes on the 
boundary, this can be manipulated into the following 
form: 

6 F  = Jv( Vdf - (jo)-'V,xVdf)*8$dV (26) 

where the curl and gradient operators are 
differentiatingwith respect to different variables. The 
forcing term is again derived by substituting the 
integrand in the above expression into (5 ) :  

- /  

(27) 
l(j,,a,e,v;EA) = 

I,( V,f - (jo)-'V,xVgf).E:dV 

jSA = Vgf - o'o)-'v,xv,f 

This forcing term is equivalent to a source current 
density oE 

(28) 

APPLICATION TO DESIGN 

The theoretical results derived in the previous 
sections have been applied to the design of 
electromagnetic devices. The following sub-section 
explains how the optimization is set up for a simple 
objective function. The approach used for this 
example will clarify the method of application of the 
technique to other cases of interest. 

Force on a Jumping Ring 

This example "designs" the support structure for a 
jumping ring. Fig. 1 shows the basic geometry of the 
system. The system has translational symmetry, so 
the ring is actually an infinitely long rectangle. In the 

I 

Figure 1: Geometry of the Jumping Ring Problem 

subdivided region, each square is allowed to contain 
source current (either positive or negative) or a highly 
permeable material (i.e. laminated iron), or some 
mixture of the two. Note that air is included among 
the possibilities (zero current). 

The objective here is to maximize the time average of 
the upward force on the ring. The force on the ring 
is computed by integrating J x B  over the cross section 
of the ring. The upward force is of the form (25), 
although, because of translational symmetry, the 
volume integral reduces to a surface integral over the 
cross section of the ring: 

Fy = Iiwa&xS'.fdS (29) 

where y' is the unit vector in the upward direction. 
The quantity of interest is the time average of the 
upward force, which is simply: 

F = LRe(Fy) (30) 
2 

In the conductor, the electric field is entirely5 
directed (because of translational symmetry), and 
therefore: 

Fy = J,hg~EzBidS (31) 

To compute the sensitivity, the source must be set 
according to (29). However, here it becomes 
apparent that f is not exactly in the required form, 
since it is a function, not of 8, but of the complex 
conjugate of 1. To evaluate this sensitivity would 
normally require solving an additional adjoint system 
with a complex conjugated source, and using the 
complex conjugate of the sensitivity expressions. 
However, in this case, only the real part of F, is used, 
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so a simpler approach is possible. Consider the 
perturbation in Fy resulting from perturbations in the 
fields: 

where 4 is the integrand of Fy. Now consider: 

6Fy = S,[ (v&)*se + (V&' )*6d]dV (33) 

It is easy to check that the real parts of (32) and (33) 
are the same, i.e.: Re(Wy) = Re(bfiy). Therefore, 
(33) can be used instead of (25) to derive an 
expression for the source current density in the 
adjoint system. This turns out to be: 

j, = Vd& - O'O)-lVwXVdfyf (34) 

which reduces to: 

j ,  = OB, - *  + - - - -E  a ( ;) (35) 
i w  ?Y 

Once the adjoint system is solved with this source, the 
sensitivity of Fy to perturbations in any of the system 
parameters are given by the expressions in (23). The 
sensitivity of the objective function is found from 
these expressions by applying the chain rule to (30), 
and turns out to be simply one half the real part of 
these expressions: 

S,, = 'Re(jod*EA) = -zIm(k*kA) 
(36) 

2 2 

SI, = +Re( e,) 
Results 

Using this derivative information, the optimization 
converged to a partial design after 21 iterations, as 
shown in Fig. 2. The optimization was constrained to 
limit the peak current density, and the reluctivity was 
also constrained to be between its value in air and its 
value in iron. 

Note that the final design is not composed of solid 
material everywhere. However, the basic structure is 
clearly visible: an iron shell completely filled in with 
current carrying windings (the left and right currents 
are of opposite sign). 

CONCLUSION 

This paper derives expressions to compute the 
sensitivity of electromagnetic objective functions to 
perturbations in material parameters and sources. 

Figure 2 Design of Jumping Ring Support Structure 
Top: Current Density Distribution, 
Bottom: Distribution of Permeable Material. 
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